If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt
Aktuelle Zeit:0:00Gesamtdauer:1:49

Video-Transkript

Faktorisiere x hoch 2 minus 49 mal y hoch 2. Faktorisiere x hoch 2 minus 49 mal y hoch 2. Das Interessante hierbei ist, dass x eindeutig eine Quadratzahl ist; x hoch 2. Das Interessante hierbei ist, dass x eindeutig eine Quadratzahl ist; x hoch 2. Das Interessante hierbei ist, dass x eindeutig eine Quadratzahl ist; x hoch 2. 49 mal y hoch 2 ist auch eine Quadratzahl; die Quadratzahl von 7 mal y. Es sieht so aus als hätten wir eine besondere Form. Hier haben wir nochmal die generelle Form. A plus b in Klammern mal a minus b in Klammern. A plus b in Klammern mal a minus b in Klammern. Und hier kann man ein Muster sehen; Wir lösen nun diesen Term auf, indem wir die einzelnen Bestandteile miteinander multiplizieren. Wir erhalten a hoch 2 plus a mal -b (gleich -ab) plus a mal b (gleich ab) und dann b mal -b (gleich -b hoch 2). Wir erhalten a hoch 2 plus a mal -b (gleich -ab) plus a mal b (gleich ab) und dann b mal -b (gleich -b hoch 2). Wir erhalten a hoch 2 plus a mal -b (gleich -ab) plus a mal b (gleich ab) und dann b mal -b (gleich -b hoch 2). Wir erhalten a hoch 2 plus a mal -b (gleich -ab) plus a mal b (gleich ab) und dann b mal -b (gleich -b hoch 2). Wir erhalten a hoch 2 plus a mal -b (gleich -ab) plus a mal b (gleich ab) und dann b mal -b (gleich -b hoch 2). Die mittleren beiden Ausdrücke werden gekürzt. Die mittleren beiden Ausdrücke werden gekürzt. Und es bleibt a hoch 2 minus b hoch 2. Und genau dies steht hier. Wir haben a hoch 2 minus b hoch 2. A ist gleich x und b ist gleich 7y und das alles hoch 2. Dies können wir erweitern, als die dritte binomische Formel. Dies können wir erweitern, als die dritte binomische Formel. Dies können wir erweitern, als die dritte binomische Formel. Das würde dann so aussehen; x plus 7y mal x minus 7y. Das würde dann so aussehen; x plus 7y mal x minus 7y. Wir vergleichen nur das Muster von rechts mit links. Wir vergleichen nur das Muster von rechts mit links. Wenn ich a plus b mal a minus b nehme, bekomme ich die dritte binomische Formel. Wenn ich a plus b mal a minus b nehme, bekomme ich die dritte binomische Formel. Dies hier ist genau die Formel. Wenn ich diese also faktorisiere, kommt dabei so etwas raus. Wenn ich diese also faktorisiere, kommt dabei so etwas raus. Wenn ich diese also faktorisiere, kommt dabei so etwas raus.