If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt

Standardabweichung von Stichprobe und Grundgesamtheit - Wiederholung

Standardabweichung der Stichprobe und der Grundgesamtheit

Die Standardabweichung misst die Streuung einer Verteilung von Werten. Sie misst die typische Distanz zwischen einem Datenpunkt und dem arithemtischen Mittel.
Bei der Formel, die wir für die Standardabweichung nutzen, kommt es darauf an, ob die Wertemenge als eigene Grundgesamtheit gesehen wird, oder ob sie eine Stichprobe einer größeren Grundgesamtheit ist.
  • Wird die Wertemenge als eigene Grundgesamtheit gesehen, dann teilen wir durch die Anzahl an Werten N.
  • Ist die Wertemenge eine Stichprobe einer größeren Grundgesamtheit, teilen wir durch eins weniger als die Anzahl der Werte in der Stichprobe, also n, minus, 1.
Standardabweichung der Grundgesamtheit:
sigma, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis, squared, divided by, N, end fraction, end square root
Standardabweichung der Stichprobe:
s, start subscript, x, end subscript, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesis, squared, divided by, n, minus, 1, end fraction, end square root
Die Schritte sind in beiden Formeln gleich—bis auf einen: Wir teilen durch eins weniger als die Anzahl der Werte, wenn es sich um eine Stichprobe handelt.
In den folgenden Beispielen gehen wir Schritt für Schritt durch die beiden Formeln:
Warum wir durch n, minus, 1 teilen, ist eine recht komplexe Sache. Wenn du mehr über den Sinn hinter diesem Thema lernen willst, sieh dir dieses Video an.

Standardabweichung der Grundgesamtheit

Hier noch einmal die Formel für die Standardabweichung der Grundgesamtheit:
sigma, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis, squared, divided by, N, end fraction, end square root
Und so berechnen wir die Standardabweichung der Grundgesamtheit:
Schritt 1: Berechne das arithmetische Mittel der Werte—das ist das mu in der Formel.
Schritt 2: Substrahiere das arithmetische Mittel von jedem Wert. Diese Unterschiede nennt man Abweichungen. Datenpunkte unterhalb des arithmetischen Mittels werden negative Abweichungen haben, und Datenpunkte oberhalb des arithmetischen Mittels werden positive Abweichungen haben.
Schritt 3: Quadriere alle Abweichungen, damit sie positiv werden.
Schritt 4: Summiere alle quadrierten Abweichungen auf.
Schritt 5: Teile die Summe durch die Anzahl an Datenpunkten in der Grundgesamtheit. Das Ergebnis nennt man Varianz.
Schritt 6: Zieh die Wurzel auf der Varianz, um die Standardabweichung zu erhalten.

Beispiel: Standardabweichung der Grundgesamtheit

Vier Freunde vergleichen die Resultate, die sie letztens für einen Essay erhalten haben.
Berechne die Standardabweichung ihrer Resultate:
6, 2, 3, 1
Schritt 1: Ermittle das arithmetische Mittel.
mu, equals, start fraction, 6, plus, 2, plus, 3, plus, 1, divided by, 4, end fraction, equals, start fraction, 12, divided by, 4, end fraction, equals, 3
Das arithmetische Mittel ist 3 Punkte.
Schritt 2: Subtrahiere das arithmetische Mittel von jedem Resultat.
Resultat: x, start subscript, i, end subscriptAbweichung: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis
66, minus, 3, equals, 3
22, minus, 3, equals, minus, 1
33, minus, 3, equals, 0
11, minus, 3, equals, minus, 2
Schritt 3: Quadriere alle Abweichungen.
Resultat: x, start subscript, i, end subscriptAbweichung: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesisQuadrierte Abweichung: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis, squared
66, minus, 3, equals, 3left parenthesis, 3, right parenthesis, squared, equals, 9
22, minus, 3, equals, minus, 1left parenthesis, minus, 1, right parenthesis, squared, equals, 1
33, minus, 3, equals, 0left parenthesis, 0, right parenthesis, squared, equals, 0
11, minus, 3, equals, minus, 2left parenthesis, minus, 2, right parenthesis, squared, equals, 4
Schritt 4: Summiere alle quadrierten Abweichungen auf.
9, plus, 1, plus, 0, plus, 4, equals, 14
Schritt 5: Teile die Summe durch die Anzahl an Resultaten.
start fraction, 14, divided by, 4, end fraction, equals, 3, comma, 5
Schritt 6: Zieh die Wurzel aus dem Ergebnis von Schritt 5.
square root of, 3, comma, 5, end square root, approximately equals, 1, comma, 87
Die Standardabweichung ist circa 1, comma, 87.
Möchtest du mehr über die Standardabweichung der Grundgesamtheit lernen? Sieh dir dieses Video an.
Möchtest du mehr Aufgaben wie diese üben? Sieh dir diese Aufgabe in Standartabweichung der Grundgesamtheit an.

Standardabweichung der Stichprobe

Hier noch einmal die Formel für die Standardabweichung der Stichprobe:
s, start subscript, x, end subscript, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesis, squared, divided by, n, minus, 1, end fraction, end square root
Und so berechnen wir die Standardabweichung der Stichprobe:
Schritt 1: Berechne das arithmetische Mittel der Werte—das ist das x, with, \bar, on top in der Formel.
Schritt 2: Substrahiere das arithmetische Mittel von jedem Wert. Diese Unterschiede nennt man Abweichungen. Datenpunkte unterhalb des arithmetischen Mittels werden negative Abweichungen haben, und Datenpunkte oberhalb des arithmetischen Mittels werden positive Abweichungen haben.
Schritt 3: Quadriere alle Abweichungen, damit sie positiv werden.
Schritt 4: Summiere alle quadrierten Abweichungen auf.
Schritt 5: Teile die Summe durch eins weniger als die Anzahl an Datenpunkten in der Stichprobe. Das Ergebnis nennt man Varianz.
Schritt 6: Zieh die Wurzel auf der Varianz, um die Standardabweichung zu erhalten.

Beispiel: Standardabweichung der Stichprobe

Eine Stichprobe von 4 Schülern wurde gezogen, um herauszufinden, wie viele Stifte sie dabei haben.
Berechne die Standardabweichung der Stichprobe ihrer Antworten:
2, 2, 5, 7
Schritt 1: Ermittle das arithmetische Mittel.
x, with, \bar, on top, equals, start fraction, 2, plus, 2, plus, 5, plus, 7, divided by, 4, end fraction, equals, start fraction, 16, divided by, 4, end fraction, equals, 4
Das arithmetische Mittel der Stichprobe ist 4 Stifte.
Schritt 2: Subtrahiere das arithmetische Mittel von jedem Resultat.
Stifte: x, start subscript, i, end subscriptAbweichung: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis
22, minus, 4, equals, minus, 2
22, minus, 4, equals, minus, 2
55, minus, 4, equals, 1
77, minus, 4, equals, 3
Schritt 3: Quadriere alle Abweichungen.
Stifte: x, start subscript, i, end subscriptAbweichung: left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesisQuadrierte Abweichung: left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesis, squared
22, minus, 4, equals, minus, 2left parenthesis, minus, 2, right parenthesis, squared, equals, 4
22, minus, 4, equals, minus, 2left parenthesis, minus, 2, right parenthesis, squared, equals, 4
55, minus, 4, equals, 1left parenthesis, 1, right parenthesis, squared, equals, 1
77, minus, 4, equals, 3left parenthesis, 3, right parenthesis, squared, equals, 9
Schritt 4: Summiere alle quadrierten Abweichungen auf.
4, plus, 4, plus, 1, plus, 9, equals, 18
Schritt 5: Teile die Summe durch eins weniger als die Anzahl an Werten.
start fraction, 18, divided by, 4, minus, 1, end fraction, equals, start fraction, 18, divided by, 3, end fraction, equals, 6
Schritt 6: Zieh die Wurzel aus dem Ergebnis von Schritt 5.
square root of, 6, end square root, approximately equals, 2, comma, 45
Die Standardabweichung der Stichprobe ist circa 2, comma, 45.
Möchtest du mehr über die Standardabweichung der Stichprobe lernen? Sieh dir dieses Video an.
Möchtest du mehr Aufgaben wie diese üben? Sieh dir diese Aufgabe in Standardabweichung der Stichprobe und der Grundgesamtheit an.