If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt

Diagonalen im Parallelogramm - Beweis

Sal beweist, dass ein Viereck nur dann ein Parallelogramm ist, wenn die Diagonalen einander halbieren. Erstellt von Sal Khan

Willst du an der Diskussion teilnehmen?

Noch keine Beiträge.
Verstehst du Englisch? Klick hier, um weitere Diskussionen auf der englischen Khan Academy Seite zu sehen.

Video-Transkript

Wir haben hier ein Parallelogramm. Ich möchte beweisen, dass sich seine Diagonalen gegenseitig halbieren. Zuerst können wir über folgendes nachdenken: Es sind nicht nur Diagonalen. Diese Geraden schneiden auch Parallelen. Man kann sie also auch als Transversale auffassen. Wenn wir uns die Strecke DB ansehen, sehen wir, dass sie DC und AB schneidet. Da wir wissen, dass sie parallel sind - denn es ist ein Parallelogramm - wissen wir auch, dass die Wechselwinkel kongruent sein müssen. Also muss dieser Winkel gleich diesem Winkel sein. Ich schreibe das schnell an. Ich nenne den Mittelpunkt E. Wir wissen also, dass der Winkel ABE kongruent zum Winkel CDE sein muss, weil es sich um Wechselwinkel an einer Geraden handelt, die zwei Parallelen schneidet. Wenn wir uns die Diagonale AC ansehen - wir sollten sie Transversale AC nennen - können wir genauso argumentieren. Die Schnittpunkte liegen hier und hier. Diese beiden Geraden sind parallel. Also müssen die Wechselwinkel kongruent sein. Winkel DEC muss kongruent sein zum Winkel BAE aus demselben Grund. Damit haben wir etwas Interessantes gefunden, wenn wir uns das obere Dreieck und dieses untere Dreieck ansehen. Wir haben einen Satz entsprechend kongruenter Winkel. Wir haben auch eine Seite dazwischen, die kongruent ist. Ich schreibe es ausführlich auf. Wir wissen - das haben wir im vorigen Video bewiesen - dass in Parallelogrammen gegenüberliegende Seiten nicht nur parallel sind, sondern auch kongruent. Wir wissen also aus dem vorigen Video, dass diese Seite gleich dieser Seite ist. Zurück zu dem, was ich vorhin sagte. Wir haben zwei Sätze entsprechender Winkel, die kongruent sind, wir haben eine Seite dazwischen, die kongruent ist, und wir haben einen weiteren Satz zusammengehörender Winkel, die kongruent sind. Wir wissen also, das dieses Dreieck kongruent zu diesem Dreieck ist, durch die Kongruenz von Winkel-Seite-Winkel. durch die Kongruenz von Winkel-Seite-Winkel. Wir wissen, dass dieses Dreieck - ich gehe von blau über orange zum letzten Punkt - dieses Dreieck ABE kongruent ist zum Dreieck - blau, orange, letzter Punkt - CDE durch Winkel-Seite-Winkel-Kongruenz. Winkel-Seite-Winkel-Kongruenz. Wie hilft uns das weiter? Wir wissen: Wenn zwei Dreiecke kongruent sind, sind alle ihre entsprechenden Merkmale, insbesondere ihre entsprechenden Seiten, kongruent. Also wissen wir, dass die Seite EC der Seite EA entspricht. Ich könnte auch sagen, dass die Seite AE der Seite CE entspricht. Sie sind die entsprechenden Seiten kongruenter Dreiecke, also müssen ihre Maße oder Längen übereinstimmen. AE muss gleich CE sein. Ich nehme zwei Striche, da ich hier schon einen Strich verwendet habe. Nach derselben Logik wissen wir, dass DE - ich beginne besser hier - wie wissen, dass BE gleich DE sein muss. Noch einmal: Sie sind entsprechende Seiten zweier kongruenter Dreiecke, also müssen sie dieselbe Länge haben. Das ist also entsprechende Seiten kongruenter Dreiecke. Also ist BE gleich DE. Wir haben damit unseren Beweis erledigt. Wir haben gezeigt, dass die Diagonale DB AC in zwei Segmente gleicher Länge schneidet und umgekehrt. AC schneidet DB in zwei Segmente gleicher Länge. Sie halbieren sich gegenseitig. Jetzt wollen wir es andersherum angehen. Wir wollen folgendes beweisen: Wenn wir zwei Diagonalen eines Vierecks haben, die sich gegenseitig halbieren, dann liegt ein Parallelogramm vor. Mal sehen. Wir nehmen also an, dass sich die beiden Diagonalen gegenseitig halbieren. Wir nehmen an, dass dieser Teil gleich diesem und dieser hier gleich diesem ist. Dies vorausgesetzt, wollen wir beweisen, dass es sich um ein Parallelogramm handelt. Dazu müssen wir uns nur daran erinnern, dass dieser Winkel gleich diesem Winkel ist - das ist eines der ersten Dinge, die wir gelernt haben - weil es Scheitelwinkel sind. Ich schreibe es auf. Ich schreibe den Punkt an. Winkel CED ist gleich - oder ist kongruent zu - Winkel BEA. Winkel BEA. Das zeigt uns, dass diese beiden Dreiecke kongruent sind, weil die entsprechenden Seiten kongruent sind, ein Winkel dazwischen, und dann die andere Seite. Wir wissen also, dass das Dreieck - ich nehme gelb - Dreieck AEB kongruent ist zum Dreieck DEC wegen der Seite-Winkel-Seite-Kongruenz, der SWS-Kongruenz. Wenn wir wissen, dass zwei Dreiecke kongruent sind, wissen wir, dass alle ihre enstprechenden Seiten und Winkel kongruent sind. Zum Beispiel wissen wir, dass der Winkel CDE kongruent zum Winkel BAE ist. kongruent zum Winkel BAE ist. Sie sind entsprechende Winkel kongruenter Dreiecke. Wir haben diese Querverbindung dieser beiden Geraden die parallel sein könnten, falls die Wechselwinkel kongruent sind. Wir sehen, dass sie es sind. Diese beiden sind unsere Wechselwinkel und sie sind kongruent. Also muss AB parallel zu CD sein. AB ist parallel zu CD wegen der Wechselwinkelkongruenz bei parallelen Geraden. Ich schreibe in einigen Abkürzungen. Entschuldige die rätselhafte Schreibweise. Ich spreche es ausführlich aus. Wir können exakt dasselbe machen - wir haben bereits gezeigt, dass diese beiden Seiten parallel sind. Wir können auf derselben Weise zeigen, dass diese beiden Seiten parallel sind. Ich muss es nicht alles aufschreiben, aber es ist exakt derselbe Beweis für diese beiden. Zunächst wissen wir, dass dieser Winkel kongruent zu diesem Winkel hier ist. Wir wissen, dass der Winkel AEC kongruent zum Winkel DEB ist. Wir wissen, dass der Winkel AEC kongruent zum Winkel DEB ist. Sie sind Scheitelwinkel. Sie sind Scheitelwinkel. Das war auch hier oben unsere Begründung. Das war auch hier oben unsere Begründung. Jetzt sehen wir, dass das Dreieck AEC kongruent sein muss zum Dreieck DEB wegen der Seite-Winkel-Seite-Kongruenz. Dreieck AEC muss also kongruent sein zu Dreieck DEB wegen der SWS-Kongruenz. Dann wissen wir auch, dass entsprechende Winkel kongruent sein müssen. Zum Beispiel muss Winkel CAE kongruent zum Winkel BDE sein. Zum Beispiel muss Winkel CAE kongruent zum Winkel BDE sein. Sie sind die entsprechenden Winkel kongruenter Dreiecke. Also muss CAE - ich nehme eine andere Farbe - kongruent zu BDE sein. kongruent zu BDE sein. Wir haben also eine Querverbindung. Die Wechselwinkel sind kongruent. Also müssen die beiden Geraden, die von der Querverbindung geschnitten werden, parallel sein. Diese muss parallel zu dieser sein. AC muss parallel zu BD sein wegen der Wechselwinkel. wegen der Wechselwinkel. Wir haben es geschafft. Wir haben bewiesen: Wenn die Diagonalen sich gegenseitig halbieren, falls wir dies als gegeben voraussetzen, kommen wir darauf, dass die gegenüberliegenden Seiten des Vierecks parallel sein müssen oder dass ABCD ein Paralleolgramm ist.