If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt
Aktuelle Zeit:0:00Gesamtdauer:6:47

Bearbeitetes Beispiel: Arithmetische Reihe (Summenausdruck)

Video-Transkript

Wir haben die Summe -50 + (-44) + (-38)... bis hin zu 2038 + 2044. Pausiere das Video und versuche, das Ergebnis dieser Summe herauszufinden. Jetzt lösen wir die Aufgabe gemeinsam. Der erste Term hier ist -50 und dann haben wir -44, der zweite Term ist also -50 + 6. Beim dritten Term addieren wir wieder 6. -44 + 6 = -38 und wir addieren bis hier hin immer 6, und um von 2038 zu 2044 zu kommen, addieren wir wieder 6. Jeder folgende Term ist also um 6 höher als der Term davor. Diese Summe ist also eine arithmetische Reihe. Es ist die Summe einer arithmetischen Folge. Jeder Term ist um 6 höher, also eine konstante Menge höher, als der Term davor. Wir wissen also, wie wir die Summe einer arithmetischen Folge herausfinden. Wenn wir die Summe der ersten n Terme einer arithmetischen Folge nehmen, bzw. die ersten n Terme einer arithmetischen Reihe untersuchen, dann addieren wir den ersten und letzten Term und dividieren das Ergebnis durch 2. Das ist dann der Durchschnitt des ersten und letzten Terms, multipliziert mit der Anzahl der Terme, die wir haben. Wir kennen unseren ersten und letzten Term. Das hier ist a1, und das ist unser letzter Term: 2044. Das ist also unser an. Was ist jetzt n? Wie viele Terme haben wir eigentlich? Um das herauszufinden, fragen wir uns einfach, wie viele Male wir 6 addieren müssen, um von -50 auf 2044 zu kommen. 2044 - (-50) ist dasselbe wie 2044 + 50 und ergibt 2094. Ich habe das berechnet, weil ich herausfinden möchte, wie groß die Entfernung zwischen -50 und 2044 ist. Ich muss um 50 erhöhen, um 0 zu erreichen, und dann um weitere 2044 erhöhen. Also muss ich um 2094 erhöhen. Wenn ich bei jedem Term 6 addiere, wie viel Male muss ich dann 6 addieren, um um 2094 zu erhöhen? Um das herauszufinden, dividieren wir 2094 durch 6. 6 passt 3-mal in 20, 3 ⋅ 6 = 18, 20 - 18 = 2, wir holen die 9 nach unten, 6 passt 4-mal in 29, 4⋅ 6 = 24, 29 - 24 = 5, wir holen die 4 nach unten, wir haben 54, die 6 passt 9-mal in die 54, 9 ⋅ 6 = 54, und wir sind fertig. Um von -50 zu 2044 zu kommen, muss ich die 6 genau 349-mal addieren. Ich addiere also 1-mal, ich addiere 2-mal, und das hier ist das 349-te Mal, das ich 6 addiere. Wie viele Terme habe ich also? Du denkst vielleicht, dass du 349 Terme hast, aber du hast eigentlich 349 + 1 Terme. Du hast die 349 für jedes Mal, das du 6 addiert hast, das ist also das erste Mal, das du 6 addiert hast, das ist das zweite Mal, das du 6 addiert hast, bis hin zum 349-ten Mal, das du 6 addiert hast. Das ist das 349-te Mal, das ich 6 addiert habe, um das zu erhalten, aber wir haben den ersten Term noch nicht gezählt. Wir haben also den ersten Term und addieren dann 349-mal die 6. Wir haben also 350 Terme in dieser Summe. In diesem Fall haben wir also n = 350. Die Summe der ersten 350 Terme ist also gleich dem Durchschnitt des ersten und letzten Terms, also ((-50 + 2044) / 2) ⋅ 350. Was ergibt -50 + 2044? 2094. (2094 / 2) ⋅ 350. Wir haben also 2094, das ist falsch, ich habe 294 geschrieben. Ich habe einen Fehler gemacht. Das ergibt eigentlich 1994. Das ergibt eigentlich (1994 / 2) ⋅ 350. 350 / 2 = 175. Also rechnen wir 1994 ⋅ 175. Ich benutze einen Taschenrechner dafür. 1994 ⋅ 175 = 348.950. Jetzt könnten wir das in Sigma-Notation aufschreiben, da wir jetzt wissen, was n ist. Wir haben unsere Antwort gefunden, aber falls du neugierig bist, könnten wir das als Summe von k = 1 bis k = 350, mit der Funktion -50 + 6(k - 1) schreiben, denn beim ersten Term wollen wir die 6 nicht addieren, und beim letzten Term wollen wir die 6 genau 349-mal addieren. Und wir sind fertig. Das ist diese arithmetische Reihe in der Sigma-Notation. Ich hoffe, das hilft dir weiter. Entschuldige meinen kleinen Fehler vorhin.