If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt
Aktuelle Zeit:0:00Gesamtdauer:4:42

Umgekehrte Proportionalität - Textaufgabe: Saitenschwingungen

Video-Transkript

In dieser Aufgabe geht es um ein Saiteninstrument, bei dem die Länge der Saite, die wir l nennen, umgekehrt proportional zu der Frequenz variiert. l besteht also aus einer Konstanten, die mit dem Kehrwert der Frequenz multipliziert wird. Ich benutze f für die Frequenz der Schwingung. Dann steht hier, dass die Schwingungen den Ton bei Saiteninstrumenten erzeugen. Schön. Eigentlich beeinflussen die Schwingungen der Saite die Luft, und die Luftverdichtung erreicht schließlich unser Trommelfell. Dadurch erhalten wir die Wahrnehmung des Geräuschs. Aber das nur am Rande. Wir haben eine Saite, die 11 Zoll lang ist. 11 Zoll ist also die Länge. Die Saite, die 11 Zoll lang ist, hat eine Frequenz von 400 Schwingungen pro Sekunde. Das hier ist also die Frequenz. Eine Schwingung pro Sekunde wird auch Hertz genannt. Finde den Proportionalitätsfaktor, und finde dann die Frequenz einer 10-Zoll-Saite heraus. Wir haben also eine 11-Zoll-Saite, die gleich einem Proportionalitätsfaktor multipliziert mit 1/400 Schwingungen pro Sekunde ist. Um den Proportionalitätsfaktor herauszufinden, müssen wir beide Seiten mit 400 Schwingungen pro Sekunde multiplizieren. Wir multiplizieren die linke Seite mit 400 Schwingungen pro Sekunde, und erhalten links 400 ⋅ 11. 4 ⋅ 11 = 44. Also ist 400 ⋅ 11 = 4400. Dann haben wir unsere Einheiten, nämlich (Schwingungen ⋅ Zoll) / Sekunde. Wir haben also (Schwingungen ⋅ Zoll) im Zähler, und Sekunden im Nenner. Und das ergibt unseren Proportionalitätsfaktor. Die Länge ist also gleich 4400 (Schwingungen ⋅ Zoll) / Sekunde, multipliziert mit 1 / Frequenz. Wir haben also nach unserem Proportionalitätsfaktor aufgelöst. Jetzt können wir ihn benutzen, um die Frequenz einer 10-Zoll-Saite zu finden. Wir haben jetzt also eine Länge von 10 Zoll. Wir haben also 10 Zoll = 4400 ((Schwingungen ⋅ Zoll) / Sekunde) ⋅ (1 / f). Jetzt können wir beide Seiten der Gleichung mit der Frequenz multiplizieren, damit wir sie im Nenner loswerden. Das machen wir jetzt. Wir multiplizieren beide Seiten mit der Frequenz. Dann können wir außerdem beide Seiten durch 10 Zoll dividieren, um das hier loszuwerden. Dann haben wir die Frequenz nur noch links stehen. Wir dividieren beide Seiten durch 10 Zoll. Links bleibt nur noch die Frequenz übrig. Rechts haben wir 4400/10. 4400/10 = 440. Und dann haben wir ((Schwingungen ⋅ Zoll) / (Sekunden)) / Zoll. Die beiden Zoll-Einheiten kürzen sich weg. Und es bleibt nur Schwingungen pro Sekunde übrig. 1/f ⋅ f kürzt sich weg und es bleibt nur 1 übrig. Wir erhalten also unsere Frequenz für eine 10-Zoll-Saite. Unsere Frequenz hat sich auf 440 Schwingungen pro Sekunde erhöht. Als sie 11 Zoll, also etwas länger war, hatten wir eine Frequenz von 400 Schwingungen pro Sekunde. Jetzt ist unsere Saite ein kleines bisschen, nämlich 1 Zoll kürzer, und unsere Frequenz hat sich um 40 Schwingungen pro Sekunde erhöht.