If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt
Aktuelle Zeit:0:00Gesamtdauer:2:44

Einführung in die Addition und Subtraktion von rationalen Ausdrücken: ungleiche Nenner

Video-Transkript

In diesem Video möchte ich den Umgang mit algebraischen Ausdrücken üben, die Brüche beinhalten. Wir fangen einfach an. Ich habe zum Beispiel a / b + c / d. Wenn ich diese Terme addieren will, so dass ich nur einen Bruch habe, wie würde ich das machen? Wir könnten einen gemeinsamen Nenner finden. Wir wissen nicht, was b ist, wir wissen nicht, was d ist, aber wir wissen, dass b ⋅ d ein gemeinsamer Nenner ist. Er ist ein gemeinsames Vielfaches von b und d. Wir können es also in zwei Brüche umschreiben, die den gemeinsamen Nenner bd haben. a / b ist also dasselbe wie was, wenn bd im Nenner steht? Um bd zu erhalten, habe ich den Nenner mit d multipliziert, also multipliziere ich den Zähler ebenfalls mit d, denn dann habe ich den Wert des Bruches nicht geändert. Ich multipliziere einfach mit d / d. Das ist also ad / bd. Du siehst, dass wenn ich Zähler und Nenner durch d dividiere, wieder a / b erhalte. Dann schauen wir uns den zweiten Bruch c / d an. Um von d auf bd zu kommen, haben wir mit b multipliziert. Wenn wir also den Nenner mit b multiplizieren, und ich den Wert des Bruches nicht ändern will, muss ich den Zähler ebenfalls mit b multiplizieren. Wir multiplizieren also auch den Zähler mit b, und erhalten bc / bd. Das ist c / d. Der Bruch hier in Magenta ist mit diesem Bruch gleichwertig. Ich habe ihn einfach nur mit d / d multipliziert, wovon wir annehmen, dass es 1 ist, wenn wir annehmen, dass d ≠ 0 ist, Wenn wir dann einfach c / d mit 1 multiplizieren, was dasselbe ist wie b / b, wenn wir annehmen, dass b ≠ 0, dann sind diese beiden Brüche gleichwertig. Warum habe ich das alles gemacht? Weil ich dadurch jetzt einen gemeinsamen Nenner habe, und die beiden Brüche addieren kann. Wie lautet das Ergebnis? Unser gemeinsamer Teiler ist bd, und ich kann die Zähler einfach addieren, so wie ich es mit Zahlen machen würde, wenn es kein algebraischer Ausdruck wäre. Das Ergebnis ist also (ad + bc) / bd.