If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt

Mit zusammengesetzten Funktionen modellieren

Sal bestimmt die richtigen Funktionen zum Kombinieren (und die richtige Reihenfolge), um eine gegebene Beziehung zu modellieren und umgekehrt.

Video-Transkript

Carter hat ein paar quantitative Zusammenhänge in Bezug auf den Erfolg seines Fußballteams festgestellt, und diese mit den folgenden Funktionen modelliert. Das ist interessant. Er hat also diese Funktion N, in die der Gewinnprozentsatz w eingesetzt wird, und das Ergebnis ist die durchschnittliche Anzahl von Fans pro Spiel. Er bildet also ein Modell das aussagt, dass die Anzahl der Fans pro Spiel in einer Weise vom Gewinnprozentsatz abhängt. Ich nehme an, dass sein Modell aussagt, dass je höher der Gewinnprozentsatz ist, desto mehr Fans zu einem Spiel erscheinen werden. Bei Funktion W wird die durchschnittliche tägliche Trainingszeit x eingesetzt, und das Ergebnis ist der Gewinnprozentsatz. Okay, das ergibt Sinn. Häufiger zu trainieren hat wahrscheinlich einen positiven Effekt und sorgt für einen höheren Gewinnprozentsatz. In die Funktion P wird die Anzahl der Regentage r eingesetzt, und man erhält als Ergebnis die durchschnittliche Trainingszeit. Ja, je mehr Regentage man hat, desto kürzer ist die durchschnittliche Trainingszeit. Ich verstehe also, dass die Trainingszeit P eine Funktion ist, bei der die Anzahl der Regentage eingesetzt wird. Der Ausdruck N(W(x)) repräsentiert welche der folgenden Antwortmöglichkeiten? Bevor wir uns die Möglichkeiten anschauen, sollten wir darüber nachdenken, was passiert. Das ist eine andere Art um auszudrücken, dass wir das x hier nehmen, und es in W einsetzen. Wir erhalten als Ergebnis W(x) und setzen das in unsere Funktion N ein. Und wir erhalten N(W(x)). Was macht die Funktion W hier drüben? Das ist der Gewinnprozentsatz als eine Funktion der Trainingszeit. Du setzt also Trainingszeit ein und erhältst den Gewinnprozentsatz. Und dann nimmst du diesen Gewinnprozentsatz und setzt ihn in Funktion N ein. Funktion N gibt uns dann die Anzahl der Fans pro Spiel, basierend auf dem Gewinnprozentsatz. Das ist also die Anzahl der Fans. Wenn du also die zusammengesetzte Funktion nimmst, bildest du eine Funktion, in die die Trainingszeit eingesetzt wird, und die uns die Anzahl der Fans gibt, die von der Trainingszeit abhängt. Das ist interessant. Wir suchen also eine Antwortmöglichkeit, die sagt: "Wie ist die Anzahl der Fans, die ein Spiel besuchen von der Trainingszeit x abhängig?" "Der Gewinnprozentsatz des Teams als eine Funktion der durchschnittlichen täglichen Trainingszeit." Das wäre einfach nur W(x). Wenn wir nur W(x) nähmen, das wäre der Gewinnprozentsatz als eine Funktion der durchschnittlichen täglichen Trainingszeit. Also kann ich diese Antwort durchstreichen. "Die durchschnittliche Anzahl der Fans pro Spiel..." Das ist interessant, denn das ist das endgültige Ergebnis, die durchschnittliche Anzahl von Fans pro Spiel, das ist das Ergebnis von Funktion N. "Die durchschnittliche Anzahl der Fans pro Spiel als eine Funktion der Anzahl der Regentage in einer Saison." Nein, das suchen wir nicht. Wir suchen eine Funktion der Trainingszeit. Wir könnten das bilden, das wäre N(W(P(r))). Das wäre diese Antwortmöglichkeit. Man setzt die Anzahl der Regentage ein, erhält die Trainingszeit und setzt diese wieder ein, um den Gewinnprozentsatz zu erhalten, und dann setzt du den Gewinnprozentsatz ein, um die Anzahl der Fans beim Spiel zu erhalten. Aber das ist nicht das, was wir suchen. Wir fangen mit der täglichen Trainingszeit an und erhalten die Anzahl der Fans pro Spiel. Ich streiche das also durch. Wenn das, was ich eben gemacht habe, etwas verwirrend für dich war, empfehle ich dir, ein Diagramm zu zeichnen, so wie ich es am Anfang gemacht habe. Anstatt zu sagen: "Wir könnten r einsetzen, um die durchschnittliche tägliche Trainingszeit zu erhalten, und diese dann in W einsetzen, um den Gewinnprozentsatz zu erhalten. Dann diesen in N einsetzen, um die durchschnittliche Anzahl der Fans pro Spiel zu erhalten." Aber das ist nicht das, was mit N(W(x)) beschrieben wird. "Die durchschnittliche Anzahl von Fans pro Spiel als eine Funktion der durchschnittlichen täglichen Trainingszeit des Teams." Ja, genau das ist es. Die durchschnittliche Trainingszeit x wird in die Funktion W eingesetzt, und wir erhalten den Gewinnprozentsatz, den wir in N einsetzen, um die durchschnittliche Anzahl der Fans pro Spiel zu erhalten. "Die durchschnittliche Anzahl von Fans pro Spiel als eine Funktion der durchschnittlichen täglichen Trainingszeit des Teams." Ja, ich entscheide mich dafür. Lösen wir noch eine Aufgabe. Das ist interessant. "Denise hat in dem Park in ihrer Nähe einige quantitative Beziehungen festgestellt, und sie mit den folgenden Funktionen modelliert." In B wird die Größe eines Baumes x eingesetzt, und man erhält die Anzahl der Vögel, die in diesem Baum brüten. In H wird die durchschnittliche Temperatur an einer bestimmten Stelle eingesetzt, und man erhält die Größe des Baumes an dieser Stelle. In T wird die Höhe einer bestimmten Stelle eingesetzt, und man erhält die durchschnittliche Temperatur an dieser Stelle. Interessant. "Welcher der folgenden Ausdrücke repräsentiert die Größe eines Baumes als Funktion seiner Höhe?" Wir wollen als Ergebnis die Größe eines Baumes haben und die Höhe einer bestimmten Stelle einsetzen. Wenn wir unsere Höhe an einer bestimmten Stelle r nehmen, und sie in die Funktion T einsetzen, erhalten wir als Ergebnis T(r), was für die durchschnittliche Temperatur an dieser Stelle steht. Wenn wir dann die durchschnittliche Temperatur an dieser Stelle nehmen, und sie in Funktion H einsetzen, erhalten wir die Größe eines Baumes an dieser Stelle. Wir erhalten also H(T(r)), was für die Größe des Baumes an dieser Stelle steht. Da haben wir es also: H(T(r)). Du beginnst mit r, der Höhe an einer bestimmten Stelle. Setzt sie in die Funktion T ein. T gibt dir die durchschnittliche Temperatur dieser Stelle. Du setzt sie in H ein. Du erhältst die Größe des Baumes an dieser Stelle. Also ist H(T(r)) die richtige Antwort.