Hauptinhalt
Aktuelle Zeit:0:00Gesamtdauer:3:46

Geradengleichung in Hauptform aus Steigung & einem Punkt

Video-Transkript

Eine Gerade hat die Steigung minus 3/4 und geht durch den Punkt (0, 8) Wie lautet die Gleichung durch den Punkt? Jede Gerade kann in einer Steigungs-Schnittstellen-Form wiedergegeben werden. y= mx+b m ist die Steigung der Geraden. m ist die Steigung der Geraden. Und b repräsentiert die Schnittstelle mit der y-Achse. Ich zeichne ein Koordinatensystem um es zu visualisieren. Das ist die y-Achse und das ist meine x-Achse. Nun zeichne ich die Gerade. Sie hat eine negative Steigung, deswegen zeichne ich eine fallende Gerade. Diese sieht in etwa so aus Da uns Steigungen schon aus vorherigen Videos bekannt sind, Da uns Steigungen schon aus vorherigen Videos bekannt sind, nehmen wir einen Punkt auf der Gerade nehmen wir einen Punkt auf der Geraden und einen weiter unten. Nun messen wir, wie weit wir auf der x-Achse wandern mussten. Und auch wie weit wir auf der y-Achse wandern mussten. Und auch wie weit wir auf der y-Achse wandern mussten. Die Steigung ergibt sich aus Anstieg (y) / Strecke (x). Da wir uns in positive x-Richtung bewegen, fällt unsere Gerade und die Steigung ist damit negativ. fällt unsere Gerade und die Steigung ist damit negativ. Also: Wenn die Strecke (x) positiv ist, dann ist unsere Steigung negativ. m ist somit eine negative Zahl (y) durch eine positive Zahl (x). Das ergibt eine negative Zahl Je weiter die Gerade abfällt, desto weiter gehe wir nach rechts. Je weiter die Gerade abfällt, desto weiter gehe wir nach rechts. Jedem Schritt nach rechts, folgt ein kleinerer y-Wert. Jedem Schritt nach rechts, folgt ein kleinerer y-Wert. Jedem Schritt nach rechts, folgt ein kleinerer y-Wert. Jedem Schritt nach rechts, folgt ein kleinerer y-Wert. Der Schnittpunkt mit der y-Achse, sagt uns wo die Gerade die y-Achse schneidet. Der Schnittpunkt ist wo die Gerade die y-Achse schneidet. Das ist dieser Punkt (0, b). Setzen wir den Punkt in die Gleichung ein. Wenn x gleich 0 ist, Wenn x gleich 0 ist, dann wird y = m * 0 + b sein. 0 mal irgendwas ergibt 0. y =0+b oder y = b, wenn x=0. Das ist also der Punkt (0, b). Wir kennen die die Steigung der Geraden. Die Steigung soll - 3/4 sein. Die Steigung soll - 3/4 sein. Außerdem wissen wir, dass die Gerade durch den Punkt (0, 8) geht. Ich markiere das mal mit grün. Ich markiere das mal mit grün. Sie schreiben: Die Gerade geht durch den Punkt (0, 8). Bedenke, x = 0. Damit sind wir auf der x-Achse. Wenn x = 0 befinden wir uns auf der y-Achse. Das ist also unsere y-Achsen-Schnittstelle. b ist damit unsere y-Achsen-Schnittstelle. Da x = 0 ist unser Punkt auch (0, b). da x = 0 ist unser Punkt auch (0, b). Damit haben wir b=8. Zusammenfassend: m= -3/4 b=8 Schreiben wir nun die Gleichung der Geraden auf. Nach der Steigungs-Schnittstellen-Form heißt es: y = -3/4 x + 8 Klasse!