Hauptinhalt
Aktuelle Zeit:0:00Gesamtdauer:5:01

Textaufgaben zu Gleichungssystemen: Unendlich viele Lösungen

Video-Transkript

Bauer Jan ist ein Gemüsebauer, der sein Feld in Brokkoli und Spinat Pflanzen aufteilt. der sein Feld in Brokkoli und Spinat Pflanzen aufteilt. Letztes Jahr hat er sechs Tonnen Brokkoli pro Acker geerntet, Letztes Jahr hat er sechs Tonnen Brokkoli pro Acker geerntet, und neun Tonnen Spinat pro Acker, und neun Tonnen Spinat pro Acker, und insgesamt 93 Tonnen Gemüse. Dieses Jahr hat er zwei Tonnen Brokkoli pro Acker geerntet, Dieses Jahr hat er zwei Tonnen Brokkoli pro Acker geerntet, und drei Tonnen Spinat pro Acker, und drei Tonnen Spinat pro Acker, und insgesamt 31 Tonnen Gemüse. Wie viele Acker Brokkoli und wie viele Acker Spinat hat Bauer Jan? Wie viele Acker Brokkoli und wie viele Acker Spinat hat Bauer Jan? Lass uns darüber nachdenken. Bezeichnen wir die Anzahl an Acker Brokkoli B Bezeichnen wir die Anzahl an Acker Brokkoli B und die Anzahl an Acker Spinat S. und die Anzahl an Acker Spinat S. Also wie viel Brokkoli hat er letztes Jahr insgesamt geerntet? Also wie viel Brokkoli hat er letztes Jahr insgesamt geerntet? Also wie viel Brokkoli hat er letztes Jahr insgesamt geerntet? Wir wissen, dass er letztes Jahr sechs Tonnen Brokkoli pro Acker geerntet hat. Wir wissen, dass er letztes Jahr sechs Tonnen Brokkoli pro Acker geerntet hat. Wir wissen, dass er letztes Jahr sechs Tonnen Brokkoli pro Acker geerntet hat. Wenn er also sechs Tonnen Brokkoli pro Acker geerntet hat, und er B Acker hat, dann bedeutet das, dass er sechs Tonnen pro Acker mal B Acker geerntet hat. Er hat also 6B Tonnen Brokkoli letztes Jahr geerntet. Wie viel Spinat hat er geerntet? Neun Tonnen Spinat pro Acker mal S Acker. Also 9S Tonnen Spinat, und dann insgesamt 93 Tonnen Gemüse. und dann insgesamt 93 Tonnen Gemüse. Also das ist gleich 93. Lass uns über dieses Jahr nachdenken. Wenn du solche Fragen allgemein angehst, dann benenne das gesuchte mit passenden Variablen dann benenne das gesuchte mit passenden Variablen und stelle nach den Angaben Gleichungen auf. Also wie viel Brokkoli hat er dieses Jahr geerntet? Er hat zwei Tonnen Brokkoli pro Acker geerntet. Er hat zwei Tonnen Brokkoli pro Acker geerntet. Er hat dieselbe Anzahl an Acker. Von dem können wir ausgehen. Also zwei Tonnen pro Acker mal B Acker ergibt 2B Tonnen Brokkoli. Und ebenso hat er drei Tonnen Spinat pro Acker geerntet. Und ebenso hat er drei Tonnen Spinat pro Acker geerntet. Er hat S Acker. Auf jedem dieser Acker hat er drei Tonnen Spinat geerntet, das ergibt 3S Tonnen Spinat. Und die gesamte Menge ist gegeben. Die gesamte Menge beträgt 31 Tonnen Gemüse. Das hier ist also 31. Und nun haben wir ein System mit 2 Gleichungen, Und nun haben wir ein System mit 2 Gleichungen, und 2 Unbekannten, dass wir lösen können um die Variablen B und S zu bestimmen. Wir haben 6B + 9S = 93. Wir haben 6B + 9S = 93. Lass uns durch die zweite Gleichung das B eliminieren. Lass uns durch die zweite Gleichung das B eliminieren. Dazu multiplizieren wir die zweite Gleichung mit -3 . Erst die linke Seite. Dann die rechte Seite. Was erhalte ich dann? -3 * 2B = -6B. So kann man beide Gleichungen addieren, und das B fällt weg. So kann man beide Gleichungen addieren, und das B fällt weg. So kann man beide Gleichungen addieren, und das B fällt weg. -3 * 3S = -9S. -3 * 31= -93. Was erhalten wir, wenn wir nun die zweiten Seiten dieser Gleichungen addieren? Was erhalten wir, wenn wir nun die zweiten Seiten dieser Gleichungen addieren? 6B - 6B = 0. 9S - 9S = 0. Auf der rechten Seite haben wir 93 - 93. Das ist wieder 0. Wir erhalten also: 0 = 0 Das ist wahr egal für welches X und Y. Das System hat unendlich viele Lösungen. Das System hat unendlich viele Lösungen. Das können wir zum Beispiel so interpretieren: Diese beiden Beschränkungen geben uns nicht genügend Informationen. Es gibt eine unendliche Anzahl an Kombinationen für B und S, die diese Gleichungen erfüllen würden. Wir haben also nicht genügend Information um genau zu sagen was B und S sind. Beides ist nämlich die selbe Gleichung. Die zweite ist nur durch 3 dividiert. Wir haben nicht genügend Info!