If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt
Aktuelle Zeit:0:00Gesamtdauer:4:42

Video-Transkript

Die Funktion g kann als eine verschobene Version von f (x) = x hoch 2 gesehen werden. Die Funktion g kann als eine verschobene Version von f (x) = x hoch 2 gesehen werden. Schreibe die Gleichung für g(x). Halte nun das Video an und schau, ob du das Ganze selbst lösen kannst. Halte nun das Video an und schau, ob du das Ganze selbst lösen kannst. Wann immer ich eine Funktion verschieben soll, und in diesem Fall handelt es sich um eine Parabel, suche ich eine markante Stelle. Bei einer Parabel ist der Scheitelpunkt unsere markanteste Stelle. Bei einer Parabel ist der Scheitelpunkt unsere markanteste Stelle. Ich verschiebe den Scheitelpunkt von f um 3 Stellen nach rechts Ich verschiebe den Scheitelpunkt von f um 3 Stellen nach rechts Ich verschiebe den Scheitelpunkt von f um 3 Stellen nach rechts und dann 4 Stellen nach unten. und dann 4 Stellen nach unten. Dann würden unsere Scheitelpunkte überlappen. Ich könnte den Scheitelpunkt dorthin verschieben, wo der Scheitelpunkt von g ist. Ich könnte den Scheitelpunkt dorthin verschieben, wo der Scheitelpunkt von g ist. Wir werden gleich zeigen -- Wir werden gleich zeigen -- -- minus vier nach unten -- dass nicht nur die Scheitelpunkte überlappen, sondern auch die gesamte Kurve überlappt. Also verschieben wir zunächst nach rechts um 3. Also verschieben wir zunächst nach rechts um 3. Also verschieben wir zunächst nach rechts um 3. Und wir überlegen also, wie würden wir unsere Gleichung ändern, damit sie um 3 nach rechts verschoben wird. Wir überlegen also, wie wir unsere Gleichung ändern, damit sie um 3 nach rechts verschoben wird. Und dann werden wir um 4 nach unten verschieben. Und dann werden wir um 4 nach unten verschieben. Und dann werden wir um 4 nach unten verschieben. Manche von euch werden das vielleicht schon kennen. Manche von euch werden das vielleicht schon kennen. Ich gehe in anderen Videos mehr darauf ein, aber im Grunde, Ich gehe in anderen Videos mehr darauf ein, aber im Grunde, wenn du um einen bestimmten Wert nach rechts verschiebst, in diesem Fall um 3, musst du x durch x Minus drei ersetzen. Ich könnte schreiben: y ist gleich f von (x Minus 3) Ich könnte schreiben: y ist gleich f von (x Minus 3). Oder: y ist gleich, statt x hoch 2, Oder: y ist gleich, statt x hoch 2, y ist gleich (x-3) hoch 2. Als ich das hier das erste Mal lernte, hörte sich das für mich intuitiv nicht sehr richtig an. Ich verschiebe also nach rechts um drei, die x-Koordinante meines Scheitelpunktes steigt also um 3, aber ich ersetze das x mit x Minus drei. Warum ergibt das Sinn? Nun ja, lass uns den Graphen der verschobenen Version anschauen! Nun ja, lass uns den Graphen der verschobenen Version anschauen! Noch mal, in anderen Videos erkläre ich das Ganze genauer. Noch mal, in anderen Videos erkläre ich das Ganze genauer. Das ist also, wie die verschobene Kurve aussieht. Wie soll die Kurve aussehen hier drüben bei x gleich 3? Wir wollen für y genau den Wert haben, den die andere Kurve bei x=0 hat. Wir wollen für y genau den Wert haben, den die andere Kurve bei x=0 hat. Bei der Anfangs-Funktion f war y an der Stelle x=0 gleich 0 hoch 2, also Null. Bei der Anfangs-Funktion f war y an der Stelle x=0 gleich 0 hoch 2, also Null. Bei der Anfangs-Funktion f war y an der Stelle x=0 gleich 0 hoch 2, also Null. Wir wollen, dass y dort auch gleich Null ist. Wir machen es so: Wir müssen einfach Null hoch zwei nehmen, und wie bekommen wir hier 0? wenn wir von x drei abziehen. Dasselbe gilt für die anderen Punkte. Zum Beispiel bei x gleich 4. 4 Minus 3 ist 1. 1 hoch 2 ist 1, wie wir es wollten. 4 Minus 3 ist 1. 1 hoch 2 ist 1, wie wir es wollten. 4 Minus 3 ist 1. 1 hoch 2 ist 1, wie wir es wollten. 4 Minus 3 ist 1. 1 hoch 2 ist 1, wie wir es wollten. Es sieht also tatsächlich so aus, als hätten wir nach rechts um drei verschoben, wenn wir x mit x Minus 3 ersetzen. Würde man x mit Plus 3 ersetzen, hätte es den gegenteiligen Effekt. Man hätte nach links um 3 verschoben. Ich würde gerne zum Nachdenken darüber anregen, warum das Ganze Sinn ergibt. Ich würde gerne zum Nachdenken darüber anregen, warum das Ganze Sinn ergibt. Nun, da wir also nach rechts um 3 verschoben haben, ist der nächste Schritt, um 4 nach unten zu verschieben. Und das ist wohl ein bisschen intuitiv klarer. Starten wir also mit dem nach rechts Verschobenen. Das ist also y ist gleich (x-3) zum Quadrat. Wir wollen aber nun, egal welchen y-Wert wir kriegen, 4 weniger als das. Wir wollen aber nun, egal welchen y-Wert wir kriegen, 4 weniger als das. Wenn also x gleich 3 ist, anstatt y gleich 0, wollen wir y ist gleich 4 weniger bzw. Minus 4. Wenn x = 4 anstelle von 1, wollen wir, dass y gleich -3 ist. Also egal welchen y-Wert wir haben - wir wollen 4 weniger. Das Verschieben in die vertikale Richtung ist also ein bisschen intuitiver klar. Wenn wir nach unten verschieben, ziehen wir diesen Wert ab. Wenn wir nach oben verschieben, fügen wir diesen Wert hinzu. Das also hier drüben ist die Gleichung für g von x. g von x wird gleich (x-3) hoch 2 Minus 4. g von x wird gleich (x-3) hoch 2 Minus 4. Und, noch mal, nur zur Wiederholung, da ich x mit x Minus 3 ersetze, bei f von x, wurde um 3 nach rechts verschoben. da ich x mit x Minus 3 ersetze, bei f von x, wurde um 3 nach rechts verschoben. da ich x mit x Minus 3 ersetze, bei f von x, wurde um 3 nach rechts verschoben. da ich x mit x Minus 3 ersetze, bei f von x, wurde um 3 nach rechts verschoben. da ich x mit x Minus 3 ersetze, bei f von x, wurde um 3 nach rechts verschoben. da ich x mit x Minus 3 ersetze, bei f von x, wurde um 3 nach rechts verschoben. Und durch die Minus 4 wurde um 4 nach unten verschoben. Und durch die Minus 4 wurde um 4 nach unten verschoben. Und durch die Minus 4 wurde um 4 nach unten verschoben. Und durch die Minus 4 wurde um 4 nach unten verschoben. Und durch die Minus 4 wurde um 4 nach unten verschoben. So bekommen wir also diesen Graphen. Und man kann visuell auch nachvollziehen, dass, wenn man jeden dieser Punkte exakt um 4 nach unten verschiebt, dass, wenn man jeden dieser Punkte exakt um 4 nach unten verschiebt, werden wir tatsächlich mit g von x überlappen. werden wir tatsächlich mit g von x überlappen.