Lade

Beispielaufgabe: Quadratische Ergänzung (Einführung)

Video-Transkript

Vervollständige den quadratischen Ausdruck, um den Wert für c zu finden, mit dem x^2 - 44x + c ein perfektes quadratisches Trinom wird. Wir sollen also ein c finden, das den Ausdruck zu einem quadratischen Trinom macht. Ein Trinom ist einfach ein Polynom mit drei Termen, wie hier gegeben. Dann sollen wir diesen 3-gliedrigen Ausdruck als Quadrat eines zweigliedrigen Ausdrucks umformen. Unser Ausdruck lautet x² - 44x + c. Wie formen wir den nun zu einem quadratischen Ausdruck um? Wenn wir uns an die typische Form eines perfekten quadratischen Ausdrucks erinnern, sagen wir (x + a)^2, sagen wir (x + a)^2, ist das gleichwertig zu (x + a) x (x + a). Das haben wir bereits besprochen. Wenn du das weiter ausmultiplizierst, erhälst du x mal x = x^2, also x Quadrat plus x mal a gleich ax, und nochmal a mal x gleich ax, plus a mal a, was a² ergibt. Insgesamt steht da also x Quadrat + 2ax + a Quadrat. Insgesamt steht da also x Quadrat + 2ax + a Quadrat. Aus dieser Form können wir nun folgendes ableiten: Wenn ich diese 2a hier halbiere und dann weiter rechts zum Quadrat nehme, Wenn ich diese 2a hier halbiere und dann weiter rechts zum Quadrat nehme, dann erhalte ich einen perfekten quadratischen Ausdruck. dann erhalte ich einen perfekten quadratischen Ausdruck. In unserem Übungsausdruck steht -44 an der Stelle, an der rechts 2a steht. Wenn wir den Ausdruck zu einem perfekten quadratischen umformen wollen, Wenn wir den Ausdruck zu einem perfekten quadratischen umformen wollen, dann muss -44 also 2a sein. dann muss -44 also 2a sein. c in unserem Ausdruck muss in dem Fall dann a zum Quadrat entsprechen. c in unserem Ausdruck muss in dem Fall dann a zum Quadrat entsprechen. Welchen Wert muss also unser a haben? Wenn wir wissen, dass -44 = 2a ist, erhalten wir nach Teilen durch 2 den Wert -22. Damit wissen wir, dass a den Wert -22 haben muss. den Wert -22. Damit wissen wir, dass a den Wert -22 haben muss. Nochmal: -44 ist unser 2a, ich teile -44 = 2a durch 2, Nochmal: -44 ist unser 2a, ich teile -44 = 2a durch 2, und erhalte -22. Wann immer man einen quadratischen Ausdruck vervollständigen muss, ist der Koeffizient vor x = 2a. Wann immer man einen quadratischen Ausdruck vervollständigen muss, ist der Koeffizient vor x = 2a. Wenn wir nun a kennen, was ist dann c? Nun, c muss a zum Quadrat sein, damit der Ausdruck quadratisch wird. Nun, c muss a zum Quadrat sein, damit der Ausdruck quadratisch wird. c muss also gleich (-22)^2 sein. Das können wir berechnen. Minus mal minus wird plus, also können wir das Negativzeichen weglassen. Minus mal minus wird plus, also können wir das Negativzeichen weglassen. 2 x 22 = 44, ich schreibe eine 0, 2 x 22 = 44, ich schreibe eine 0, 2 x 22 = 44. Wir erhalten 4 - 8 - 4, also 484. Wir erhalten 4 - 8 - 4, also 484. Wir können den Ausdruck also umformen zu: x^2 - 44x + 484, und x^2 - 44x + 484 ist damit ein perfektes quadratisches Trinom. Wir könnten das auch anders schreiben, das ist x^2 - 2(-22) + (-22)^2. das ist x^2 - 2(-22) + (-22)^2. Wenn wir uns das nun genau betrachten, wird es ziemlich klar, Wenn wir uns das nun genau betrachten, wird es ziemlich klar, dass hier ein quadratischer Ausdruck steht, den man wieder faktorisieren könnte. Das ist das selbe wie (x - 22) x (x - 22), oder eben (x - 22) zum Quadrat. Das ist das selbe wie (x - 22) x (x - 22), oder eben (x - 22) zum Quadrat. All diese Ausdrücke sind gleichwertig.