Hauptinhalt
Algebra 1
Kurs: Algebra 1 > Lerneinheit 14
Lektion 6: Binome multiplizieren- Binome multiplizieren: Flächenmodell
- Multipliziere Binome: Flächenmodell
- Binome multiplizieren - Einführung
- Warmup: Binome multiplizieren - Einführung
- Binome multiplizieren - Einführung
- Binome multiplizieren
- Binome multiplizieren
- Binome multiplizieren - Wiederholung
© 2023 Khan AcademyNutzungsbedingungenDatenschutzerklärungCookie-Meldung
Binome multiplizieren - Einführung
Sal stellt (x-4)(x+7) als das Standardtrinom x²+3x-28 dar und bespricht wie das allgemeine Produkt (x+a)(x+b) als x²+(a+b)x+a*b geschrieben werden kann.
Willst du an der Diskussion teilnehmen?
Noch keine Beiträge.
Video-Transkript
Dann lasst uns mal schauen,
ob wir dieses Produkt hier Dann lasst uns mal schauen,
ob wir dieses Produkt hier in einen quadratischen Ausdruck umformen können. in einen quadratischen Ausdruck umformen können. Die Standardform eines quadratischen Ausdrucks
sieht so aus: Die Standardform eines quadratischen Ausdrucks
sieht so aus: Ax² + Bx + C
Standardform eines quadratischen Ausdrucks Ax² + Bx + C
Standardform eines quadratischen Ausdrucks In die Schreibweise möchte ich das Produkt umformen. Bitte pausiert das Video hier
und versucht es erst einmal selbst! Bitte pausiert das Video hier
und versucht es erst einmal selbst! Nun lasst uns das zusammen durchgehen. Entscheidend beim Multiplizieren
von Binomen oder jeglichen Polynomen Entscheidend beim Multiplizieren
von Binomen oder jeglichen Polynomen ist das Distributivgesetz,
das wir alle nun gut kennen sollten. ist das Distributivgesetz,
das wir alle nun gut kennen sollten. Wir könnten folgendermaßen vorgehen: Wir könnten folgendermaßen vorgehen: Wir können den gesamten ersten Ausdruck
mit x und dann mit 7 multiplizieren. Wir können den gesamten ersten Ausdruck
mit x und dann mit 7 multiplizieren. Das heißt:
(x - 4) mal x + (x - 4) mal 7 Das heißt:
(x - 4) mal x + (x - 4) mal 7 Das schreiben wir nun auf. x (x - 4) + 7 (x - 4) x (x - 4) + 7 (x - 4) x (x - 4) + 7 (x - 4) x (x - 4) ist nur eine
andere Schreibweise für (x - 4) mal x x (x - 4) ist nur eine
andere Schreibweise für (x - 4) mal x Achtung jetzt, nochmal aufpassen! Achtung jetzt, nochmal aufpassen! Wir haben nun das Distributivgesetz
für (x - 4) (x +7) angewendet. Wir haben (x - 4) mit jedem einzelnen Term
der zweiten Klammer einzeln multipliziert. Wir haben (x - 4) mit jedem einzelnen Term
der zweiten Klammer einzeln multipliziert. Wir haben (x - 4) mit jedem einzelnen Term
der zweiten Klammer einzeln multipliziert. Nun sehen wir diese beiden
durch das + getrennten Terme. Nun sehen wir diese beiden
durch das + getrennten Terme. Diese Terme können wir nochmal vereinfachen,
indem wir nochmal ausmultiplizieren. Diese Terme können wir nochmal vereinfachen,
indem wir nochmal ausmultiplizieren. Links multiplizieren wir nach x aus und rechts nach 7. Links multiplizieren wir nach x aus und rechts nach 7. Auf gehts: Links:
x mal x = x² x mal - 4 = - 4x Zusammen also links:
x² - 4x Zusammen also links:
x² - 4x Auf der rechten Seite:
7 mal x = 7x und 7 mal - 4 = -28 Auf der rechten Seite:
7 mal x = 7x und 7 mal - 4 = -28 Auf der rechten Seite:
7 mal x = 7x und 7 mal - 4 = -28 Auf der rechten Seite:
7 mal x = 7x und 7 mal - 4 = -28 Fast geschafft! Das können wir noch ein wenig vereinfachen. Die beiden Terme 1. Grades
können wir zusammenfassen. Die beiden Terme 1. Grades
können wir zusammenfassen. Was ergeben - 4x + 7x ? Was ergeben - 4x + 7x ? Was ergeben - 4x + 7x ? Wir dürfen die Koeffizienten addieren
(Distributivgesetz, ausklammern) Wir dürfen die Koeffizienten addieren
(Distributivgesetz, ausklammern) Ich hoffe, durch die umständliche
Schreibweise wird die Regel nochmal klar. Ich hoffe, durch die umständliche
Schreibweise wird die Regel nochmal klar. Ich addiere die beiden Koeffizienten,
da ich das nach Distributivgesetz darf, Ich addiere die beiden Koeffizienten,
da ich das nach Distributivgesetz darf, Die anderen Terme behalte ich bei. Die anderen Terme behalte ich bei. Die anderen Terme behalte ich bei. Das lässt sich nun schön vereinfachen, das heißt .... Landeanflug meine Lieben! das heißt .... Landeanflug meine Lieben! Die beiden Koeffizienten addieren zu
- 4 + 7 = 3 Insgesamt also:
x² + 3x - 28 Insgesamt also:
x² + 3x - 28 Insgesamt also:
x² + 3x - 28 Damit sind wir auch schon fertig! Damit sind wir auch schon fertig! Lustigerweise bereits in genau
der gewünschten Form. Lustigerweise bereits in genau
der gewünschten Form. A = 1, B = 3, C = - 28 A = 1, B = 3, C = - 28 Lasst uns das Muster dahinter anschauen! Lasst uns das Muster dahinter anschauen! Beide x hatten den (gedachten) Koeffizienten 1 Beide x hatten den (gedachten) Koeffizienten 1 Durch Multiplizieren von x mal x
erhielten wir genau x². Ich unterstreiche das Nächste mal:
- 4 mal 7 ergab unsere -28, das C Ich unterstreiche das Nächste mal:
- 4 mal 7 ergab unsere -28, das C Ich unterstreiche das Nächste mal:
- 4 mal 7 ergab unsere -28, das C Ich unterstreiche das Nächste mal:
- 4 mal 7 ergab unsere -28, das C Die beiden Zahlen ergaben also C, hier - 28 Wie kamen wir auf die 3x, den mittleren Term? Wie kamen wir auf die 3x, den mittleren Term? Schaut euch nochmal an,
wo die Zahlen dazu herkamen: 3x ergab sich aus - 4x + 7x. Wir addierten diese - 4 und die 7, beide waren Koeffizienten von x,
daher durften wir das. Ich hoffe, ihr erkennt bereits
ein wenig das Muster dahinter! Ich hoffe, ihr erkennt bereits
ein wenig das Muster dahinter! Wenn in beiden Binomen als x-Term
nur x, also gedacht 1malx steht, Wenn in beiden Binomen als x-Term
nur x, also gedacht 1mal x steht, dann ergibt das als erstes:
(1)x mal (1)x = x² Dann ergibt das als erstes:
(1)x mal (1)x = x² Der konstante Term C
ist das Produkt der beiden Zahlen. Der konstante Term C
ist das Produkt der beiden Zahlen. Der Term 1. Grades (Bx)
ergibt sich aus der Summe der beiden Koeffizienten Der Term 1. Grades (Bx)
ergibt sich aus der Summe der beiden Koeffizienten Der Term 1. Grades (Bx)
ergibt sich aus der Summe der beiden Koeffizienten Wenn ihr das gut übt,
könnt ihr Binome viel schneller multiplizieren! Wenn ihr das gut übt,
könnt ihr Binome viel schneller multiplizieren! Wenn ihr das gut übt,
könnt ihr Binome viel schneller multiplizieren! Bitte vergesst dabei aber nie,
warum wir das so rechnen dürfen. Bitte vergesst dabei aber nie,
warum wir das so rechnen dürfen. Die Grundlage dafür ist das Distributivgesetz, das wir hier zweimal angewendet haben. Die Grundlage dafür ist das Distributivgesetz, das wir hier zweimal angewendet haben.