If you're seeing this message, it means we're having trouble loading external resources on our website.

Wenn du hinter einem Webfilter bist, stelle sicher, dass die Domänen *. kastatic.org und *. kasandbox.org nicht blockiert sind.

Hauptinhalt

Restpolynom-Satz: Faktoren überprüfen

Sal überprüft anhand des Faktorsatzes, ob (x-3) ein Faktor von (2x^4-11x^3+15x^2+4x-12) ist.

Willst du an der Diskussion teilnehmen?

Noch keine Beiträge.
Verstehst du Englisch? Klick hier, um weitere Diskussionen auf der englischen Khan Academy Seite zu sehen.

Video-Transkript

Wir werden gefragt, ob der Ausdruck x - 3 ein Teiler dieses Polynoms vierten Grades ist. Du könntest das mithilfe von algebraischer schriftlicher Division lösen, und dieses Polynom durch x - 3 dividieren und überprüfen, ob du einen Rest erhältst. Falls du einen Rest erhältst, wäre es kein Teiler davon. Aber wenn du keinen Rest erhältst, bedeutet das, dass es vollständig und ohne Rest teilbar ist, was bedeutet, dass es ein Teiler davon ist. Nur wenn der Rest = 0 ist, dann ist es ein Teiler davon. Wir kennen eine sehr schnelle Methode, um den Rest zu berechnen, wenn du ein Polynom durch solch ein Polynom ersten Grades dividierst. Der Restpolynom-Satz sagt aus, dass, wenn wir ein Polynom p(x) haben, und es durch x - a dividieren, der Rest p(a) ergibt. Finden wir also heraus, was a in diesem Fall ist. In diesem Fall ist a = 3. Lösen wir also unser Polynom wenn x = 3 ist. Wenn wir 0 erhalten, bedeutet es, dass unser Rest = 0 ist, und dass x - 3 ein Teiler ist. Wenn wir einen anderen Wert erhalten, bedeutet das, dass unser Rest ≠ 0 ist, und x - 3 kein Teiler ist. Probieren wir es also. Wir werden ein bisschen rechnen müssen. Wir schreiben 2 ⋅, 3⁴ = 81. -11, wir müssen etwas rechnen, aber wir schaffen das. 11 ⋅ 27. Ich hätte vielleicht ein einfacheres Beispiel wählen sollen, aber wir machen weiter. + 15 ⋅ 9. 4 ⋅ 3 = 12. -12. Diese zwei Terme kürzen sich weg. Jetzt müssen wir das nur noch ausrechnen. 2 ⋅ 81 = 162. Was ist 27 ⋅ (-11) ? 27 ⋅ (-10) = -270. -270 + (-27) = -297. 27 ⋅ 10 = 270, 270 + 27 = 297. Ja, das stimmt. 90 + 45 = 135. Wenn ich jetzt 162 und 135 addiere, ergibt das 297. Also haben wir 297 - 297. Es ergibt tatsächlich 0. Der Rest, wenn ich diese beiden Ausdrücke durcheinander dividiere, ergibt also 0. Also ist x - 3 tatsächlich ein Teiler dieses Polynoms.